Treatment with a selective histone deacetylase (HDAC) 1 and 2 inhibitor in aged mice rejuvenates multiple organ systems

Author:

Tammaro Alessandra,Daniels Eileen G.,Hu Iman M.,‘t Hart Kelly C.,Reid Kim,Juni Rio P.,Butter Loes M.,Vasam Goutham,Kamble Rashmi,Jongejan Aldo,Aviv Richard I.ORCID,Roelofs Joris J.T.H.,Aronica Eleonora,Boon Reinier A.ORCID,Menzies Keir J.,Houtkooper Riekelt H.ORCID,Janssens Georges E.

Abstract

ABSTRACTThe process of aging increases the risk of developing age-related diseases, which come at great societal healthcare costs and suffering to individuals. Meanwhile, targeting the basic mechanisms of aging can reduce the risk of developing age-related diseases during aging, essentially resulting in a ‘healthy aging’ process. Multiple aging pathways exist, which over past decades have systematically been confirmed through gene knockout or overexpression studies in mammals and the ability to increase healthy lifespan. In this work, we perform transcriptome-based drug screening to identify small molecules that mimic the transcriptional profiles of long-lived genetic interventions in mammals. We identify one small molecule whose transcriptional effects mimic diverse known genetic longevity interventions: compound 60 (Cmpd60), which is a selective inhibitor of histone deacetylase 1 (HDAC1) and 2 (HDAC2). In line with this, in a battery of molecular, phenotypic, and bioinformatic analyses, in multiple disease cell and animal models, we find that Cmpd60 treatment rejuvenates multiple organ systems. These included the kidney, brain, and heart. In renal aging, Cmpd60 reduced partial epithelial-mesenchymal transition (EMT)in vitroand decreased fibrosisin vivo. For the aging brain, Cmpd60 reduced dementia-related gene expressionin vivo, effects that were recapitulated when treating the APPSWE-1349 Alzheimer mouse. In cardiac aging, Cmpd60 treatment activated favorable developmental gene expressionin vivoand in line with this, improved ventricular cardiomyocyte contraction and relaxation in a cell model of cardiac hypertrophy. Our work establishes that a systemic, two-week treatment with an HDAC1/2 inhibitor serves as a multi-tissue, healthy aging intervention in mammals. This holds potential for translation towards therapeutics that promote healthy aging in humans.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3