Temperate gut phages are prevalent, diverse, and predominantly inactive

Author:

Dahlman SofiaORCID,Avellaneda-Franco LauraORCID,Kett CiaranORCID,Subedi DineshORCID,Young Remy B.ORCID,Gould Jodee A.,Rutten Emily L.ORCID,Gulliver Emily L.,Turkington Christopher J.R.ORCID,Nezam-Abadi Neda,Grasis Juris A.ORCID,Lyras DenaORCID,Edwards Robert A.ORCID,Forster Samuel C.ORCID,Barr Jeremy J.ORCID

Abstract

AbstractLarge-scale metagenomic and data mining efforts have uncovered an expansive diversity of bacteriophages (phages) within the human gut1–3. These insights include broader phage populational dynamics such as temporal stability4, interindividual uniqueness5,6and potential associations to specific disease states7,8. However, the functional understanding of phage-host interactions and their impacts within this complex ecosystem have been limited due to a lack of cultured isolates for experimental validation. Here we characterise 125 active prophages originating from 252 diverse human gut bacterial isolates using seven different induction conditions to substantially expand the experimentally validated temperate phage-host pairs originating from the human gut. Importantly, only 17% of computationally predicted prophages were induced with common induction agents and these exhibited distinct gene patterns compared to non-induced predictions. Active Bacteroidota prophages were among the most prevalent members of the gut virome, with extensive use of diversity generating retroelements and exhibiting broad host ranges. Moreover, active polylysogeny was present in 52% of studied gut lysogens and led to coordinated prophage induction across diverse conditions. This study represents a substantial expansion of experimentally validated gut prophages, providing key insights into their diversity and genetics, including a genetic pathway for prophage domestication and demonstration that differential induction was complex and influenced by divergent prophage integration sites. More broadly, it highlights the importance of experimental validation alongside genomic based computational prediction to enable further functional understanding of these commensal viruses within the human gut.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3