Ecology of prophage-like elements inBacillus subtilisat global and local geographical scale

Author:

Stefanič Polonca,Stare Eva,Floccari Valentina A.,Kovac Jasna,Hertel Robert,Rocha Ulisses,Kovács Ákos T.,Mandić-Mulec Ines,Strube Mikael Lenz,Dragoš Anna

Abstract

SummaryProphages account for a substantial part of most bacterial genomes, but the impacts on hosts remain poorly understood. Here, we combined computational and laboratory experiments to explore the abundance, distribution, and activity of prophage elements inBacillus subtilis. NCBI database genome sequences and isolates from 1 cm3riverbank soil samples were analyzed to provide insights at global and local geographical scales, respectively. Most prophages in wildB. subtilisisolates were related to mobile genetic elements previously identified in laboratory strains. Some large groups of prophages were closely related to completely uncharacterized yet functional Bacillus phages, or completely unknown. As certain prophage groups were unique to local isolates, we explored factors influencing prophages within a single genome. Phylogenetic relatedness was a slightly better predictor of host prophage repertoire than geographical origin. We show that cryptic phages can play a major role in acquisition and/or maintenance of other prophage elements both via strong antagonism or by co-dependence. Laboratory experiments showed that most predicted prophages may be cryptic, since they failed to induce under DNA-damaging stress conditions. Interestingly, the magnitude of stress responses remained proportional to the total number of prophage elements predicted, suggesting their importance in host physiology. This study highlights the diversity, integration patterns, and co-occurrence of prophages inB. subtilisand their potential impact on host evolution and physiology. Understanding these dynamics provides insight into bacterial genome evolution and prophage-host interactions, laying the groundwork for future experimental studies on the roles of phages in the ecology and evolution of this bacterial species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3