Building explainable graph neural network by sparse learning for the drug-protein binding prediction

Author:

Wang Yang,Shi Zanyu,Richardson Timothy,Huang Kun,Weerawarna Pathum,Wang Yijie

Abstract

ABSTRACTExplainable Graph Neural Networks (GNNs) have been developed and applied to drug-protein binding prediction to identify the key chemical structures in a drug that have active interactions with the target proteins. However, the key structures identified by the current explainable GNN models are typically chemically invalid. Furthermore, a threshold needs to be manually selected to pinpoint the key structures from the rest. To overcome the limitations of the current explainable GNN models, we propose our SLGNN, which stands for using Sparse Learning to Graph Neural Networks. Our SLGNN relies on using a chemical-substructure-based graph (where nodes are chemical substructures) to represent a drug molecule. Furthermore, SLGNN incorporates generalized fussed lasso with message-passing algorithms to identify connected subgraphs that are critical for the drug-protein binding prediction. Due to the use of the chemical-substructure-based graph, it is guaranteed that any subgraphs in a drug identified by our SLGNN are chemically valid structures. These structures can be further interpreted as the key chemical structures for the drug to bind to the target protein. We demonstrate the explanatory power of our SLGNN by first showing all the key structures identified by our SLGNN are chemically valid. In addition, we illustrate that the key structures identified by our SLGNN have more predictive power than the key structures identified by the competing methods. At last, we use known drug-protein binding data to show the key structures identified by our SLGNN contain most of the binding sites.CCS CONCEPTS• Computing methodologiesNeural networks;Supervised learning by classification;Neural networks.ACM Reference FormatYang Wang, Zanyu Shi, Timothy Richardson, Kun Huang, Pathum Weerawarna, and Yijie Wang. 2023. Building explainable graph neural network by sparse learning for the drug-protein binding prediction. InProceedings of Make sure to enter the correct conference title from your rights confirmation email (CNB MAC 2023). ACM, New York, NY, USA, 10 pages.https://doi.org/XXXXXXX.XXXXXXX

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3