Abstract
SUMMARYActivation of PINK1 and Parkin in response to mitochondrial damage initiates a cytoprotective mitophagy response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding protein that acts as a negative regulator of autophagy. The structure of the Rubicon-RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed,in vitrophosphorylation of RAB7A by TBK1 abrogates Rubicon-RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献