Online Bayesian Optimization of Nerve Stimulation

Author:

Wernisch Lorenz,Edwards Tristan,Berthon AntoninORCID,Tessier-Lariviere Olivier,Sarkans ElvijsORCID,Stoukidi Myrta,Fortier-Poisson Pascal,Pinkney Max,Thornton Michael,Hanley Catherine,Lee Susannah,Jennings Joel,Appleton Ben,Garsed Phillip,Patterson Bret,Buttinger Will,Gonshaw Samuel,Jakopec Matjaž,Shunmugam Sudhakaran,Mamen Jorin,Tukiainen Aleksi,Lajoie Guillaume,Armitage Oliver,Hewage Emil

Abstract

AbstractObjectiveIn bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs modifying their function. Stimulation devices, capable of triggering exogenous neural signals using electrical wave forms, require a complex and multi-dimensional parameter space in order to control such wave forms. Determining the best combination of parameters (wave form optimization, or dosing) for treating a particular patient’s illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting, due to the size of the parameter space. Restricting this space, however, may lead to sub-optimal therapeutic results, reduced responder rates, and adverse effects.ApproachAs an alternative to a full parameter search, we present a flexible machine learning, data acquisition and processing framework for optimizing neural stimulation parameters requiring as few steps as possible using Bayesian optimization. Such optimization builds a model of the neural and physiological responses to stimulations enabling it to optimize stimulation parameters and to provide estimates of the accuracy of the response model. The vagus nerve innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate and is therefore ideal for demonstrating the effectiveness of our approach.Main results.The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to vagus nerve stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target heart rates and optimizing neural B-fibre activations despite high intersubject variability.SignificanceAn optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3