Abstract
AbstractDifferences in dietary fatty acid saturation impact glucose homeostasis and insulin sensitivity in vertebrates. Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis. Here, using a croaker model, we report that dietary palmitic acid (PA), but not oleic acid or linoleic acid, leads to dysregulation of mTORC1 signaling which provokes systemic insulin resistance and glucose intolerance. Mechanistically, using croaker primary myocytes, mouse C2C12 myotubes and HEK293T cells, we show that PA-induced mTORC1 activation is dependent on mitochondrial fatty acid β oxidation. Notably, PA profoundly elevates acetyl-CoA derived from mitochondrial fatty acid β oxidation which intensifies Tip60-mediated Rheb acetylation. Subsequently, the induction of Rheb acetylation facilitates hyperactivation of mTORC1 which enhances serine phosphorylation of IRS1 and simultaneously inhibits transcription of IRS1 through impeding TFEB nuclear translocation, leading to impairment of insulin signaling. Furthermore, targeted abrogation of acetyl-CoA produced from fatty acid β oxidation or Tip60-mediated Rheb acetylation by pharmacological inhibition and genetic knockdown rescues PA-induced insulin resistance. Collectively, this study reveals a conserved acetylation-dependent mechanistic insight for understanding the link between fatty acids and insulin resistance, which may provide a potential therapeutic avenue to intervene in the development of T2D.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献