DeeplyTough: Learning Structural Comparison of Protein Binding Sites

Author:

Simonovsky Martin,Meyers JoshuaORCID

Abstract

AbstractMotivationProtein binding site comparison (pocket matching) is of importance in drug discovery. Identification of similar binding sites can help guide efforts for hit finding, understanding polypharmacology and characterization of protein function. The design of pocket matching methods has traditionally involved much intuition, and has employed a broad variety of algorithms and representations of the input protein structures. We regard the high heterogeneity of past work and the recent availability of large-scale benchmarks as an indicator that a data-driven approach may provide a new perspective.ResultsWe propose DeeplyTough, a convolutional neural network that encodes a three-dimensional representation of protein binding sites into descriptor vectors that may be compared efficiently in an alignment-free manner by computing pairwise Euclidean distances. The network is trained with supervision: (i) to provide similar pockets with similar descriptors, (ii) to separate the descriptors of dissimilar pockets by a minimum margin, and (iii) to achieve robustness to nuisance variations. We evaluate our method using three large-scale benchmark datasets, on which it demonstrates excellent performance for held-out data coming from the training distribution and competitive performance when the trained network is required to generalize to datasets constructed independently.Availabilityhttps://github.com/BenevolentAI/DeeplyToughContactmartin.simonovsky@enpc.fr,joshua.meyers@benevolent.ai

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. AlQuraishi, M. (2018). End-to-End Differentiable Learning of Protein Structure. Available at SSRN 3239970.

2. Why do deep convolutional networks generalize so poorly to small image transformations?;arXiv preprint,2018

3. The recognition of identical ligands by unrelated proteins;ACS Chemical Biology,2015

4. SiteHopper - a unique tool for binding site comparison;Journal of Cheminformatics,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3