Abstract
Alu are high copy number interspersed repeats that have accumulated near genes during primate and human evolution. They are a pervasive source of structural variation in modern humans. Impacts that Alu insertions may have on gene expression are not well understood, although some have been associated with expression quantitative trait loci (eQTLs). Here, we directly test regulatory effects of polymorphic Alu insertions in isolation of other variants on the same haplotype. To screen insertion variants for those with such effects, we used ectopic luciferase reporter assays and evaluated 110 Alu insertion variants, including more than 40 with a potential role in disease risk. We observed a continuum of effects with significant outliers that up- or down-regulate luciferase activity. Using a series of reporter constructs, which included genomic context surrounding the Alu, we can distinguish between instances in which the Alu disrupts another regulator and those in which the Alu introduces new regulatory sequence. We next focused on three polymorphic Alu loci associated with breast cancer that display significant effects in the reporter assay. We used CRISPR to modify the endogenous sequences, establishing cell lines varying in the Alu genotype. Our findings indicate that Alu genotype can alter expression of genes implicated in cancer risk, including PTHLH, RANBP9, and MYC. These data show that commonly occurring polymorphic Alu elements can alter transcript levels and potentially contribute to disease risk.
Funder
National Institutes of Health
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics(clinical),Genetics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献