Ring shape Golden Ratio multicellular structures are algebraically afforded by asymmetric mitosis and one to one cell adhesion

Author:

Butler William E.,Kinane T. Bernard

Abstract

AbstractGolden Ratio proportions are found throughout the world of multicellular organisms but the underlying mechanisms behind their appearance and their adaptive value if any remain unknown. The Golden Ratio is a real-valued number but cell population counts are whole numbered. Binet's formula connects the Golden Ratio to the whole numbered Fibonacci sequence (fn+1 = fn + fn–1 where f1 = 1 and f2 = 2), so we seek a cellular mechanism that yields Fibonacci cell kinetics. Drawing on Fibonacci’s description of growth patterns in rabbits, we develop a matrix model of Fibonacci cell kinetics based on an asymmetric pause between mitoses by daughter cells. We list candidate molecular mechanisms for asymmetric mitosis such as epigenetically asymmetric chromosomal sorting at anaphase due to cytosine-DNA methylation. A collection of Fibonacci-sized cell groups produced each by mitosis needs to assemble into a larger multicellular structure. We find that the mathematics for this assembly are afforded by a simple molecular cell surface configuration where each cell in each group has four cell to cell adhesion slots. Two slots internally cohere a cell group and two adhere to cells in other cell groups. We provide a notation for expressing each cell’s participation in dual Fibonacci recurrence relations. We find that single class of cell to cell adhesion molecules suffices to hold together a large assembly of chained Fibonacci groups having Golden Ratio patterns. Specialized bindings between components of various sizes are not required. Furthermore, the notation describes circumstances where chained Fibonacci-sized cell groups may leave adhesion slots unoccupied unless the chained groups anneal into a ring. This unexpected result suggests a role for Fibonacci cell kinetics in the formation of multicellular ring forms such as hollow and tubular structures. In this analysis, a complex molecular pattern behind asymmetric mitosis coordinates with a simple molecular cell adhesion pattern to generate useful multicellular assemblies. Furthermore, this reductively unifies two of the hypothesized evolutionary steps: multicellularity and cellular eusociality.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3