Algebraic Nexus of Fibonacci Forms and Two-Simplex Topology in Multicellular Morphogenesis

Author:

Butler Hoyos William E.1ORCID,Andrade Loarca Héctor2,Kahle Kristopher T.1,Williams Ziv1,Lamb Elizabeth G.3,Alcántara Julio4ORCID,Kinane Thomas Bernard5,Turcio Cuevas Luis J.6

Affiliation:

1. Neurosurgical Service, Massachusetts General Hospital, Boston, MA 02114, USA

2. Department of Mathematics, Ludwig Maximilian University of Munich, 80333 Munich, Germany

3. Massachusetts General Hospital for Children, Boston, MA 02114, USA

4. Center for Analysis and Social Mathematics, École des Hautes Études en Sciences Sociales, 75006 Paris, France

5. Pediatric Pulmonology, Massachusetts General Hospital, Boston, MA 02114, USA

6. Departamento de Matemáticas, Universidad Nacional Autónoma de Mexico, Coyoacan 04510, Mexico

Abstract

Background: Fibonacci patterns and tubular forms both arose early in the phylogeny of multicellular organisms. Tubular forms offer the advantage of a regulated internal milieu, and Fibonacci forms may offer packing efficiencies. The underlying mechanisms behind the cellular genesis of Fibonacci and tubular forms remain unknown. Methods: In a multicellular organism, cells adhere to form a macrostructure and to coordinate further replication. We propose and prove simple theorems connecting cell replication and adhesion to Fibonacci forms and simplicial topology. Results: We identify some cellular and molecular properties whereby the contact inhibition of replication by adhered cells may approximate Fibonacci growth patterns. We further identify how a component 2→3 cellular multiplication step may generate a multicellular structure with some properties of a two-simplex. Tracking the homotopy of a two-simplex to a circle and to a tube, we identify some molecular and cellular growth properties consistent with the morphogenesis of tubes. We further find that circular and tubular cellular aggregates may be combinatorially favored in multicellular adhesion over flat shapes. Conclusions: We propose a correspondence between the cellular and molecular mechanisms that generate Fibonacci cell counts and those that enable tubular forms. This implies molecular and cellular arrangements that are candidates for experimental testing and may provide guidance for the synthetic biology of hollow morphologies.

Publisher

MDPI AG

Reference80 articles.

1. Meisner, G.B. (2018). The Golden Ratio, Race Point Publishing.

2. Livio, M. (2008). The Golden Ratio, Broadway Books.

3. Michelangelo, the Last Judgment fresco, Saint Bartholomew and the Golden Ratio;Malysz;Clin. Anat.,2015

4. Phi in physiology, psychology and biomechanics: The golden ratio between myth and science;Iosa;Biosystems,2018

5. The origin of Metazoa: A unicellular perspective;Degnan;Nat. Rev. Genet.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3