Simulating the impact of sensorimotor deficits on reaching performance

Author:

Sketch Sean M.,Simpson Cole S.,Crevecoeur Frédéric,Okamura Allison M.

Abstract

AbstractThe healthy human nervous system accurately and robustly controls movements despite nonlinear dynamics, noise, and delays. After a stroke, motor ability frequently becomes impaired. To provide insight into the relative impact of specific sensorimotor deficits on motor performance, we modeled neural control of reaching with the human upper limb as a near-optimally feedback-controlled two-degree-of-freedom system with biologically based parameters. We added three sensorimotor impairments commonly associated with post-stroke hemiparesis—abnormal joint coupling, increased noise on internally modeled dynamics, and muscular weakness— and examined the impact on reaching performance. We found that abnormal joint coupling unknown to the system’s internal model caused systematic perturbations to trajectories, longer reach durations, and target overshoot. Increasing internal model noise and muscular weakness had little impact on motor performance unless model noise was increased by several orders of magnitude. Many reaches performed by our perturbed models replicate features commonly observed in reaches by hemiparetic stroke survivors. The sensitivity to unmodeled abnormal joint coupling agrees with experimental findings that abnormal coupling (possibly related to internal model errors) is the main cause of post-stroke motor impairment.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. D. W. Franklin , L. P. J. Selen , S. Franklin , and D. M. Wolpert , “Selection and control of limb posture for stability,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 5626–5629, 2013.

2. The world health report 2002 - reducing risks, promoting healthy life;Education for Health,2003

3. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects

4. Task-dependent weakness at the elbow in patients with hemiparesis

5. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3