A stress response that allows highly mutated eukaryotic cells to survive and proliferate

Author:

Zabinsky Rebecca A.,Mares Jonathan,She Richard,Zeman Michelle K.,Silvers Thomas R.,Jarosz Daniel F.

Abstract

ABSTRACTRapid mutation fuels the evolution of many cancers and pathogens. Much of the ensuing genetic variation is detrimental, but cells can survive by limiting the cost of accumulating mutation burden. We investigated this behavior by propagating hypermutating yeast lineages to create independent populations harboring thousands of distinct genetic variants. Mutation rate and spectrum remained unchanged throughout the experiment, yet lesions that arose early were more deleterious than those that arose later. Although the lineages shared no mutations in common, each mounted a similar transcriptional response to mutation burden. The proteins involved in this response formed a highly connected network that has not previously been identified. Inhibiting this response increased the cost of accumulated mutations, selectively killing highly mutated cells. A similar gene expression program exists in hypermutating human cancers and is linked to survival. Our data thus define a conserved stress response that buffers the cost of accumulating genetic lesions and further suggest that this network could be targeted therapeutically.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3