Heat shock protein gene expression is higher and more variable with thermal stress and mutation accumulation in Daphnia

Author:

Scheffer Henry,Coate Jeremy,Ho Eddie K. H.,Schaack Sarah

Abstract

AbstractUnderstanding the genetic architecture of the stress response and its ability to evolve in response to different stressors requires an integrative approach. Here we quantify gene expression changes in response to two stressors associated with global climate change and habitat loss—heat shock and mutation accumulation. We measure expression levels for two Heat Shock Proteins (HSP90 and HSP60)—members of an important family of conserved molecular chaperones that have been shown to play numerous roles in the cell. While HSP90 assists with protein folding, stabilization, and degradation throughout the cell, HSP60 primarily localizes to the mitochondria and mediates de novo folding and stress-induced refolding of proteins. We perform these assays in Daphnia magna originally collected from multiple genotypes and populations along a latitudinal gradient, which differ in their annual mean, maximum, and range of temperatures. We find significant differences in overall expression between loci (10-fold), in response to thermal stress (~6x increase) and with mutation accumulation (~4x increase). Importantly, stressors interact synergistically to increase gene expression levels when more than one is applied (increasing, on average, >20x). While there is no evidence for differences among the three populations assayed, individual genotypes vary considerably in HSP90 expression. Overall, our results support previous proposals that HSP90 may act as an important buffer against not only heat, but also mutation, and expands this hypothesis to include another member of the gene family acting in a different domain of the cell.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. The transcriptomic and proteomic responses of Daphnia pulex to changes in temperature and food supply comprise environment-specific and clone-specific elements;BMC Genomics,2018

2. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures.

3. Thermal acclimation changes DNA-binding activity of heat shock factor 1 (HSF1) in the goby Gillichthys mirabilis:implications for plasticity in the heat-shock response in natural populations;Journal of Experimental Biology,2002

4. Evolution of thermal tolerance in multifarious environments;Molecular Ecology,2018

5. The growing world of small heat shock proteins: from structure to functions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3