LUZP1 and the tumour suppressor EPLIN are negative regulators of primary cilia formation

Author:

Gonçalves JoãoORCID,Coyaud Étienne,Laurent Estelle M.N.,Raught Brian,Pelletier LaurenceORCID

Abstract

ABSTRACTCilia/flagella are microtubule-based cellular projections with important sensory and motility functions. Their absence or malfunction is associated with a growing number of human diseases collectively referred to as ciliopathies. However, the fundamental mechanisms underpinning cilia biogenesis and functions remain only partly understood. Here, we show that LUZP1, and its interacting protein EPLIN, are negative regulators of primary cilia formation. LUZP1 is an actin-associated protein that localizes to both actin filaments and the centrosome/basal body. Like EPLIN, LUZP1 is an actin-stabilizing protein and likely regulates actin dynamics at the centrosome. Both proteins interact with ciliogenesis and cilia length regulators, and are potential players in the actin-dependent processes involved in centrosome to basal body conversion. Ciliogenesis deregulation caused by LUZP1 or EPLIN loss may contribute to the pathology of their associated diseases.SUMMARYGonçalves et al. show that LUZP1 and its interactor EPLIN are negative regulators of ciliogenesis. LUZP1 is a novel actin-stabilizing protein localizing at the centrosome and basal body where it may regulate actin-associated processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3