Transcriptome-wide association analysis of 211 neuroimaging traits identifies new genes for brain structures and yields insights into the gene-level pleiotropy with other complex traits

Author:

Zhao Bingxin,Shan Yue,Yang Yue,Li Tengfei,Luo Tianyou,Zhu Ziliang,Li Yun,Zhu Hongtu

Abstract

AbstractStructural and microstructural variations of human brain are heritable and highly polygenic traits, with hundreds of associated genes founded in recent genome-wide association studies (GWAS). Using gene expression data, transcriptome-wide association studies (TWAS) can prioritize these GWAS findings and also identify novel gene-trait associations. Here we performed TWAS analysis of 211 structural neuroimaging phenotypes in a discovery-validation analysis of six datasets. Using a cross-tissue approach, TWAS discovered 204 associated genes (86 new) exceeding Bonferroni significance threshold of 1.37*10−8(adjusted for testing multiple phenotypes) in the UK Biobank (UKB) cohort, and validated 18 TWAS or previous GWAS-detected genes. The TWAS-significant genes of brain structures had been linked to a wide range of complex traits in different domains. Additional TWAS analysis of 11 cognitive and mental health traits detected 69 overlapping significant genes with brain structures, further characterizing the genetic overlaps among these brain-related traits. Through TWAS gene-based polygenic risk scores (PRS) prediction, we found that TWAS PRS gained substantial power in association analysis compared to conventional variant-based PRS, and up to 6.97% of phenotypic variance (p-value=7.56*10−31) in testing datasets can be explained by UKB TWAS-derived PRS. In conclusion, our study illustrates that TWAS can be a powerful supplement to traditional GWAS in imaging genetics studies for gene discovery-validation, genetic co-architecture analysis, and polygenic risk prediction.

Publisher

Cold Spring Harbor Laboratory

Reference101 articles.

1. Beyond a bigger brain: Multivariable structural brain imaging and intelligence

2. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151)

3. van der Meer, D. et al. Brain scans from 21,297 individuals reveal the genetic architecture of hippocampal subfield volumes. Molecular Psychiatry, in press. (2018).

4. The relationship of IQ and emotional processing with insula volume in schizophrenia;Schizophrenia Research,2018

5. The relationship between brain volumes and intelligence in bipolar disorder;Journal of Affective Disorders,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3