Genetic signatures of human brain structure: A comparison between GWAS and relatedness-based regression

Author:

Lyu BingjiangORCID,Tsvetanov Kamen A.,Tyler Lorraine K.,Clarke Alex,Amos William,

Abstract

AbstractIdentifying the genetic variations impacting human brain structure and their further effects on cognitive functions, is important for our understanding of the fundamental bases of cognition. In this study, we take two different approaches to this issue: classical genome-wide association analysis (GWAS) and a relatedness-based regression approach (REL) to search for associations between genotype and brain structural measures of gray matter and white matter. Instead of searching genetic variants by testing the association between a phenotype trait and the genotype of each single-nucleotide polymorphism (SNP) as in GWAS, REL takes advantage of multiple SNPs within a genomic window as a single measure, which potentially find associations wherever the functional SNP is in linkage disequilibrium (LD) with SNPs that have been sampled. We also conducted a simulation analysis to systemically compare GWAS and REL with respect to different levels of LD. Both methods succeed in identifying genetic variations associated with regional and global brain structural measures and tend to give complementary results due to the different aspects of genetic properties used. Simulation results suggest that GWAS outperforms REL when the signal is relatively weak. However, the collective effects due to local LD boost the performance of REL with increasing signal strength, resulting in better performance than GWAS. Our study suggests that the optimal approach may vary across the genome and that pre-testing for LD could allow GWAS to be preferred where LD is high and REL to be used where LD is low, or the local pattern of LD is complex.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3