Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast.

Author:

Buck S W,Shore D

Abstract

RAP1 is a sequence-specific DNA-binding protein in yeast that can either repress or activate transcription. Previous studies have demonstrated a direct role for RAP1 in silencing at HM mating-type loci and telomeres. Here, we show that a small carboxy-terminal domain of RAP1 is sufficient to establish repression when fused to the GAL4 DNA-binding domain (GBD) and targeted to mutated HMR silencers containing GAL4 DNA-binding sites. Silencing by GBD/RAP1 hybrids, like normal silencing at HMR, requires the trans-acting factors SIR2, SIR3, and SIR4. However, GBD/RAP1-mediated silencing is independent of SIR1, whose product is normally required for the establishment of repression at HMR. Targeted silencing also displays an unusual response to silencing-defective rap1s mutations. The incorporation of a rap1s missense mutation into GBD/RAP1 hybrids can improve targeted silencing, yet wild-type GBD/RAP1 hybrids fail to establish repression in strains in which the endogenous RAP1 locus carries a rap1s mutation. In addition, we find that telomeric silencing is increased in rap1s strains. We propose that the rap1s mutation creates an HMR-specific silencing defect by shifting a balance between silencing at HMR and telomeres in favor of telomeric silencing. This balance is regulated by telomere length and by interactions between the RAP1 carboxyl terminus and both RIF1 and SIR4 proteins. In support of this model, we show that abnormally long telomeres antagonize silencing at HMR and a rap1s hybrid protein displays a strengthened interaction with SIR4 in a two-hybrid assay.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3