Unwrap RAP1’s Mystery at Kinetoplastid Telomeres

Author:

Li Bibo1234ORCID

Affiliation:

1. Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA

2. Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA

3. Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA

4. Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA

Abstract

Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries and block nucleolytic degradation of the natural chromosome ends, although the detailed underlying mechanisms are not identical. In addition, the specialized telomere structure exerts a repressive epigenetic effect on expression of genes located at subtelomeres in a number of eukaryotic organisms. This so-called telomeric silencing also affects virulence of a number of microbial pathogens that undergo antigenic variation/phenotypic switching. Telomere proteins, particularly the RAP1 homologs, have been shown to be a key player for telomeric silencing. RAP1 homologs also suppress the expression of Telomere Repeat-containing RNA (TERRA), which is linked to their roles in telomere stability maintenance. The functions of RAP1s in suppressing telomere recombination are largely conserved from kinetoplastids to mammals. However, the underlying mechanisms of RAP1-mediated telomeric silencing have many species-specific features. In this review, I will focus on Trypanosoma brucei RAP1’s functions in suppressing telomeric/subtelomeric DNA recombination and in the regulation of monoallelic expression of subtelomere-located major surface antigen genes. Common and unique mechanisms will be compared among RAP1 homologs, and their implications will be discussed.

Funder

NIH

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3