Matrix stiffness controls ciliogenesis and centriole position

Author:

Williantarra IvannaORCID,Leung SophiaORCID,Choi Yu SukORCID,Channa AshikaORCID,McGlashan Sue RORCID

Abstract

AbstractMechanical stress and the stiffness of the extracellular matrix are key drivers of tissue development and homeostasis. Aberrant mechanosensation is associated with a wide range of pathologies, including diseases such as osteoarthritis. Substrate stiffness is one of the well-known mechanical properties of the matrix that enabled establishing the central dogma of an integrin-mediated mechanotransduction using stem cells. However, how specific cells ‘feel’ or sense substrate stiffness requires further study. The primary cilium is an essential cellular organelle that senses and integrates mechanical and chemical signals from the extracellular environment. We hypothesised that the primary cilium dynamically alters its length and position to fine-tune cell mechanosignalling based on substrate stiffness alone. We used a hydrogel system of varying substrate stiffness to examine the role of substrate stiffness on cilia frequency, length and centriole position as well as cell and nuclei area over time. Contrary to other cell types, we show that chondrocyte primary cilia shorten on softer substrates demonstrating tissue-specific mechanosensing which is aligned with the tissue stiffness the cells originate from. We further show that stiffness alone determines centriole positioning to either the basal or apical membrane during attachment and spreading, with centriole positioned towards the basal membrane on stiffer substrates. These phenomena are mediated by force generation actin-myosin stress fibres in a time-dependent manner. Based on these findings, we propose that substrate stiffness plays a central role in cilia positioning, regulating cellular response to external forces, and may be a key driver of mechanosignalling-associated diseases.Significance StatementThe primary cilium has been thrust into the limelight owing to its role as a cellular sensor in embryonic development and adult tissue maintenance. How the primary cilium interacts with the mechanical environment still remains unclear. We show that substrate stiffness dynamically regulates primary cilium length and position through integrin-mediated traction forces, the cilia are a key determinant of cell shape on certain stiffnesses. Our data support the promising potential of primary cilia as a novel target in mechanotherapy for improved clinical outcomes in cartilage pathobiology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3