Abstract
SummaryThe Drosophila brain is a work horse in neuroscience. Single-cell transcriptome analysis 1–5, 3D morphological classification 6, and detailed EM mapping of the connectome 7–10 have revealed an immense diversity of neuronal and glial cell types that underlie the wide array of functional and behavioral traits in the fruit fly. The identities of these cell types are controlled by – still unknown – gene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes. To characterize the GRN for each cell type in the Drosophila brain, we profiled chromatin accessibility of 240,919 single cells spanning nine developmental timepoints, and integrated this data with single-cell transcriptomes. We identify more than 95,000 regulatory regions that are used in different neuronal cell types, of which around 70,000 are linked to specific developmental trajectories, involving neurogenesis, reprogramming and maturation. For 40 cell types, their uniquely accessible regions could be associated with their expressed transcription factors and downstream target genes, through a combination of motif discovery, network inference techniques, and deep learning. We illustrate how these “enhancer-GRNs” can be used to reveal enhancer architectures leading to a better understanding of neuronal regulatory diversity. Finally, our atlas of regulatory elements can be used to design genetic driver lines for specific cell types at specific timepoints, facilitating the characterization of brain cell types and the manipulation of brain function.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献