Role of sleep quality in the acceleration of biological aging and its potential for preventive interaction on air pollution insults: findings from the UK Biobank cohort

Author:

Gao XuORCID,Huang Ninghao,Huang Tao

Abstract

AbstractBackgroundSleep has been associated with aging and relevant health outcomes, but their causal relationship remains inconclusive.MethodsIn this study, we investigated the associations of sleep behaviors with biological ages (BAs) among 363,886 middle and elderly-aged adults from UK Biobank. Sleep index (0 [worst]-6 [best]) of each participant was retrieved from six sleep behaviors: snoring, chronotype, daytime sleepiness, sleep duration, insomnia, and difficulties in getting up. Two BAs, the KDM-biological age and PhenoAge, were estimated by corresponding algorithms based on clinical traits, and their discrepancies with chronological age were defined as the age accelerations (AAs).ResultsWe first observed negative associations between the sleep index and the two AAs, and demonstrated that the change of AAs could be the consequence of sleep quality using Mendelian randomization with genetic risk scores of sleep index and BAs. Particularly, one unit increase in sleep index was associated with 0.105- and 0.125-year decreases in KDM-biological age acceleration and PhenoAge acceleration, respectively. Furthermore, we observed significant independent and joint effects of sleep and air pollution (i.e. PM2.5 and NO2), another key driver of aging, on BAs. Sleep quality also showed modifying effect on the associations of elevated PM2.5 and NO2 levels with accelerated aging. For instance, an interquartile range increase in PM2.5 level was associated with 0.011-, 0.047-, and 0.078-year increase in PhenoAge acceleration among people with high (5-6), medium (3-4), and low (0-2) sleep index, respectively.ConclusionsOur findings elucidate that better sleep quality could lessen accelerated biological aging resulting from exogenous exposures including air pollution.FundingPeking University Start-up Grant (BMU2021YJ044)

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3