Long-term air pollution, cardiometabolic multimorbidity, and genetic susceptibility: a multi-state modeling study of 415,855 participants

Author:

Gao XuORCID,Jiang Meijie,Huang Ninghao,Guo Xinbiao,Baccarelli Andrea A.,Huang Tao

Abstract

AbstractBackgroundCardiometabolic multimorbidity (CMM) with at least two cardiometabolic diseases (CMDs) including type II diabetes (T2D), ischemic heart disease (IHD), and stroke, is a global health problem with multiplicative mortality risk and deserves to be investigated as a top priority. Although air pollution is a leading modifiable environmental risk for individual CMD, its impacts on CMM progression were poorly understood.ObjectiveTo elucidate the impact of air pollution on CMM progression, individually and in the context of genetic preposition.DesignMulti-state modeling cohort study.SettingData were extracted from the UK Biobank.Participants415,855 eligible UK Biobank adults that were free of CMDs at baseline.MeasurementsAnnual concentrations of particulate matter (PM) with a diameter of ≤2.5 μm (PM2.5), 2.5-10 μm (PM2.5-10), and ≤10 μm (PM10), and nitrogen oxides (NOx and NO2) were estimated using Land Use Regression model.ResultsDuring a median follow-up of 8.93 years, 33,375 participants had a first CMD (FCMD), and 3,257 subsequently developed CMM. PM2.5, PM10, NO2, and NOx levels, as well as their combined exposure were associated with increased FCMD risks and even higher risks of CMM. Particularly, per a 5-μg/m3 increase in PM2.5, risks for FCMD and CMM increased by 27% (95% confidence interval: 20%-34%) and 41% (18%-68%), respectively. By FCMD types, participants with IHD had a higher risk of CMM than those with T2D or stroke. Eighty-five CMD-related genetic variants were associated with CMM trajectories in our study and associations of air pollution with FCMD and CMM risks could be aggravated progressively with increasing genetic risks.LimitationsOther major air pollutants including ozone and SO2 were not considered due to the data availability.ConclusionsAir pollution has profound adverse health impacts on the progression of CMM through multi-stage dynamics, especially for individuals with IHD and high genetic risk.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3