AlphaFold2 transmembrane protein structure prediction shines

Author:

Hegedűs TamásORCID,Geisler MarkusORCID,Lukács GergelyORCID,Farkas BiankaORCID

Abstract

AbstractTransmembrane (TM) proteins are major drug targets, indicated by the high percentage of prescription drugs acting on them. For a rational drug design and an understanding of mutational effects on protein function, structural data at atomic resolution are required. However, hydrophobic TM proteins often resist experimental structure determination and in spite of the increasing number of cryo-EM structures, the available TM folds are still limited in the Protein Data Bank. Recently, the DeepMind’s AlphaFold2 machine learning method greatly expanded the structural coverage of sequences, with high accuracy. Since the employed algorithm did not take specific properties of TM proteins into account, the validity of the generated TM structures should be assessed. Therefore, we investigated the quality of structures at genome scales, at the level of ABC protein superfamily folds, and also in specific individual cases. We tested template-free structure prediction also with a new TM fold, dimer modeling, and stability in molecular dynamics simulations. Our results strongly suggest that AlphaFold2 performs astoundingly well in the case of TM proteins and that its neural network is not overfitted. We conclude that a careful application of its structural models will advance TM protein associated studies at an unexpected level.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3