Author:
Kazmierski Julia,Elsner Carina,Döhner Katinka,Xu Shuting,Ducroux Aurélie,Pott Fabian,Jansen Jenny,Thorball Christian W.,Zeymer Ole,Zhou Xiaoyi,Fedorov Roman,Fellay Jacques,Löffler Markus W.,Weber Alexander N. R.,Sodeik Beate,Goffinet Christine
Abstract
AbstractUpon recognition of aberrantly located DNA, the innate immune sensor cGAS activates STING/IRF-3-driven antiviral responses. Here we characterized the ability of a specific variant of the cGAS-encoding gene MB21D1, rs610913, to alter cGAS-mediated DNA sensing and viral infection. rs610913 is a frequent G>T polymorphism resulting in a P261H exchange in the cGAS protein. Data from the International Collaboration for the Genomics of HIV suggested that rs610913 nominally associates with HIV-1 acquisition in vivo. Molecular modeling of cGAS(P261H) hinted towards the possibility for an additional binding site for a potential cellular co-factor in cGAS dimers. However, cGAS(WT) or cGAS(P261H)-reconstituted THP-1 cGAS KO cells shared steady-state expression of interferon-stimulated genes (ISGs), as opposed to cells expressing the enzymatically inactive cGAS(G212A/S213A). Accordingly, cGAS(WT) and cGAS(P261H) cells were less susceptible to lentiviral transduction and infection with HIV-1, HSV-1, and Chikungunya virus as compared to cGAS KO- or cGAS(G212A/S213A) cells. Upon DNA challenge, innate immune activation appeared to be mildly reduced upon expression of cGAS(P261H) compared to cGAS(WT). Finally, DNA challenge of PBMCs from donors homozygously expressing rs610913 provoked a trend towards a slightly reduced type I IFN response as compared to PBMCs from GG donors. Taken together, the steady-state activity of cGAS maintains a base-line antiviral state rendering cells more refractory to ISG-sensitive viral infections. Even though rs610913 failed to grossly differ phenotypically from the wild-type gene, its expression potentially results in a slightly altered susceptibility to viral infections in vivo.
Publisher
Cold Spring Harbor Laboratory