Abstract
ABSTRACTReplication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. Elucidating the mechanism of recombination between repeated sequences in the context of replication stress is essential to understanding how genome rearrangements occur. To gain insight into this process, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Remarkably, we show that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, as well as Mph1/Rad5 fork remodelers, Mre11/Exo1 short and long-range resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 structure-selective nucleases. Physical analysis of replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats at stalled replication forks that can actively contribute to genomic rearrangements.
Publisher
Cold Spring Harbor Laboratory