Deep learning-based algorithm for predicting the live birth potential of mouse embryos

Author:

Tokuoka YutaORCID,Yamada Takahiro G.ORCID,Mashiko DaisukeORCID,Ikeda Zenki,Kobayashi Tetsuya J.ORCID,Yamagata KazuoORCID,Funahashi AkiraORCID

Abstract

AbstractIn assisted reproductive technology (ART), embryos produced by in vitro fertilization (IVF) are graded according to their live birth potential, and high-grade embryos are preferentially transplanted. However, the rate of live birth following clinical ART remains low worldwide, suggesting that grading is inaccurate. One explanation is that grading is classically based on the characteristic shape of embryos at a limited number of developmental stages and does not consider the shape of embryos and intracellular structures, e.g., nuclei, at various stages important for normal embryogenesis. Therefore, here we developed a Normalized Multi-View Attention Network (NVAN) that directly predicts live birth potential from nuclear structural features in live-cell fluorescence images taken of mouse embryos across a wide range of stages. The classification accuracy of our method was 83.87%, which greatly exceeded that of existing machine-learning methods and that of visual inspection by embryo culture specialists. By visualizing the features that contributed most to the prediction of live birth potential, we found that the size and shape of the cell nucleus at the morula stage and at the time of cell division were important for live birth prediction. We anticipate that our method will help ART and developmental engineering as a new basic technology for IVF embryo selection.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Finding missed cases of familial hypercholesterolemia in health systems using machine learning

2. Artificial intelligence techniques for embryo and oocyte classification

3. Evaluation and classification of bovine embryos;Animal Reproduction (AR),2018

4. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images;Scientific reports,2017

5. International regulatory landscape and integration of corrective genome editing into in vitro fertilization;Reproductive biology and endocrinology,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3