Real-world evaluation of AI-driven COVID-19 triage for emergency admissions: External validation & operational assessment of lab-free and high-throughput screening solutions

Author:

Soltan Andrew A. S.,Yang Jenny,Pattanshetty Ravi,Novak AlexORCID,Yang Yang,Rohanian Omid,Beer SallyORCID,Soltan Marina A.ORCID,Thickett David R.ORCID,Fairhead Rory,Zhu TingtingORCID,Eyre David W.ORCID,Clifton David A.,

Abstract

AbstractBackgroundUncertainty in patients’ COVID-19 status contributes to treatment delays, nosocomial transmission, and operational pressures in hospitals. However, typical turnaround times for batch-processed laboratory PCR tests remain 12-24h. Although rapid antigen lateral flow testing (LFD) has been widely adopted in UK emergency care settings, sensitivity is limited. We recently demonstrated that AI-driven triage (CURIAL-1.0) allows high-throughput COVID-19 screening using clinical data routinely available within 1h of arrival to hospital. Here we aimed to determine operational and safety improvements over standard-care, performing external/prospective evaluation across four NHS trusts with updated algorithms optimised for generalisability and speed, and deploying a novel lab-free screening pathway in a UK emergency department.MethodsWe rationalised predictors in CURIAL-1.0 to optimise separately for generalisability and speed, developing CURIAL-Lab with vital signs and routine laboratory blood predictors (FBC, U&E, LFT, CRP) and CURIAL-Rapide with vital signs and FBC alone. Models were calibrated during training to 90% sensitivity and validated externally for unscheduled admissions to Portsmouth University Hospitals, University Hospitals Birmingham and Bedfordshire Hospitals NHS trusts, and prospectively during the second-wave of the UK COVID-19 epidemic at Oxford University Hospitals (OUH). Predictions were generated using first-performed blood tests and vital signs and compared against confirmatory viral nucleic acid testing. Next, we retrospectively evaluated a novel clinical pathway triaging patients to COVID-19-suspected clinical areas where either model prediction or LFD results were positive, comparing sensitivity and NPV with LFD results alone. Lastly, we deployed CURIAL-Rapide alongside an approved point-of-care FBC analyser (OLO; SightDiagnostics, Israel) to provide lab-free COVID-19 screening in the John Radcliffe Hospital’s Emergency Department (Oxford, UK), as trust-approved service improvement. Our primary improvement outcome was time-to-result availability; secondary outcomes were sensitivity, specificity, PPV, and NPV assessed against a PCR reference standard. We compared CURIAL-Rapide’s performance with clinician triage and LFD results within standard-care.Results72,223 patients met eligibility criteria across external and prospective validation sites. Model performance was consistent across trusts (CURIAL-Lab: AUROCs range 0.858-0.881; CURIAL-Rapide 0.836-0.854), with highest sensitivity achieved at Portsmouth University Hospitals (CURIAL-Lab:84.1% [95% Wilson’s score CIs 82.5-85.7]; CURIAL-Rapide:83.5% [81.8 - 85.1]) at specificities of 71.3% (95% Wilson’s score CIs: 70.9 - 71.8) and 63.6% (63.1 - 64.1). For 3,207 patients receiving LFD-triage within routine care for OUH admissions between December 23, 2021 and March 6, 2021, a combined clinical pathway increased sensitivity from 56.9% for LFDs alone (95% CI 51.7-62.0) to 88.2% with CURIAL-Rapide (84.4-91.1; AUROC 0.919) and 85.6% with CURIAL-Lab (81.6-88.9; AUROC 0.925). 520 patients were prospectively enrolled for point-of-care FBC analysis between February 18, 2021 and May 10, 2021, of whom 436 received confirmatory PCR testing within routine care and 10 (2.3%) tested positive. Median time from patient arrival to availability of CURIAL-Rapide result was 45:00 min (32-64), 16 minutes (26.3%) sooner than LFD results (61:00 min, 37-99; log-rank p<0.0001), and 6:52 h (90.2%) sooner than PCR results (7:37 h, 6:05-15:39; p<0.0001). Sensitivity and specificity of CURIAL-Rapide were 87.5% (52.9-97.8) and 85.4% (81.3-88.7), therefore achieving high NPV (99.7%, 98.2-99.9). CURIAL-Rapide correctly excluded COVID-19 for 58.5% of negative patients who were triaged by a clinician to ‘COVID-19-suspected’ (amber) areas.ImpactCURIAL-Lab & CURIAL-Rapide are generalisable, high-throughput screening tests for COVID-19, rapidly excluding the illness with higher NPV than LFDs. CURIAL-Rapide can be used in combination with near-patient FBC analysis for rapid, lab-free screening, and may reduce the number of COVID-19-negative patients triaged to enhanced precautions (‘amber’) clinical areas.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. The Guardian UK. 40,600 people likely caught Covid while hospital inpatients in England. The Guardian https://www.theguardian.com/world/2021/may/24/up-to-8700-patients-died-after-catching-covid-in-english-hospitals (2021).

2. Factors associated with deaths due to COVID-19 versus other causes: population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform;The Lancet Regional Health - Europe,2021

3. UK National Medical Director, Chief Nursing Officer for England, Chief People Officer & National Director for Emergency and Elective Care. Letter: Healthcare associated COVID-19 infections – further action. NHS England and NHS Improvement.

4. Clift, A. K. et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. The BMJ 371, (2020).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3