Algorithmic Fairness and Bias Mitigation for Clinical Machine Learning: Insights from Rapid COVID-19 Diagnosis by Adversarial Learning

Author:

Yang JennyORCID,Soltan Andrew A. S.ORCID,Yang Yang,Clifton David A.

Abstract

AbstractMachine learning is becoming increasingly prominent in healthcare. Although its benefits are clear, growing attention is being given to how machine learning may exacerbate existing biases and disparities. In this study, we introduce an adversarial training framework that is capable of mitigating biases that may have been acquired through data collection or magnified during model development. For example, if one class is over-presented or errors/inconsistencies in practice are reflected in the training data, then a model can be biased by these. To evaluate our adversarial training framework, we used the statistical definition of equalized odds. We evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments, and aimed to mitigate regional (hospital) and ethnic biases present. We trained our framework on a large, real-world COVID-19 dataset and demonstrated that adversarial training demonstrably improves outcome fairness (with respect to equalized odds), while still achieving clinically-effective screening performances (NPV>0.98). We compared our method to the benchmark set by related previous work, and performed prospective and external validation on four independent hospital cohorts. Our method can be generalized to any outcomes, models, and definitions of fairness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3