Abstract
AbstractMachine learning is becoming increasingly prominent in healthcare. Although its benefits are clear, growing attention is being given to how machine learning may exacerbate existing biases and disparities. In this study, we introduce an adversarial training framework that is capable of mitigating biases that may have been acquired through data collection or magnified during model development. For example, if one class is over-presented or errors/inconsistencies in practice are reflected in the training data, then a model can be biased by these. To evaluate our adversarial training framework, we used the statistical definition of equalized odds. We evaluated our model for the task of rapidly predicting COVID-19 for patients presenting to hospital emergency departments, and aimed to mitigate regional (hospital) and ethnic biases present. We trained our framework on a large, real-world COVID-19 dataset and demonstrated that adversarial training demonstrably improves outcome fairness (with respect to equalized odds), while still achieving clinically-effective screening performances (NPV>0.98). We compared our method to the benchmark set by related previous work, and performed prospective and external validation on four independent hospital cohorts. Our method can be generalized to any outcomes, models, and definitions of fairness.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献