Early immune responses have long-term associations with clinical, virologic, and immunologic outcomes in patients with COVID-19

Author:

Hu Zicheng,van der Ploeg Kattria,Chakraborty Saborni,Arunachalam Prabhu,Mori Diego Martinez,Jacobson Karen B.,Bonilla Hector,Parsonnet Julie,Andrews Jason,Hedlin Haley,de la Parte Lauren,Dantzler Kathleen,Ty Maureen,Tan Gene S,Blish Catherine A.,Takahashi Saki,Rodriguez-Barraquer Isabel,Greenhouse Bryan,Butte Atul J.,Singh Upinder,Pulendran Bali,Wang Taia T.,Jagannathan Prasanna

Abstract

AbstractThe great majority of SARS-CoV-2 infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, mild to moderate infections are an important contributor to ongoing transmission. There remains a critical need to identify host immune biomarkers predictive of clinical and virologic outcomes in SARS-CoV-2-infected patients. Leveraging longitudinal samples and data from a clinical trial of Peginterferon Lambda for treatment of SARS-CoV-2 infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom onset. We define early immune signatures, including plasma levels of RIG-I and the CCR2 ligands (MCP1, MCP2 and MCP3), associated with control of oropharyngeal viral load, the degree of symptom severity, and immune memory (including SARS-CoV-2-specific T cell responses and spike (S) protein-binding IgG levels). We found that individuals receiving BNT162b2 (Pfizer–BioNTech) vaccine had similar early immune trajectories to those observed in this natural infection cohort, including the induction of both inflammatory cytokines (e.g. MCP1) and negative immune regulators (e.g. TWEAK). Finally, we demonstrate that machine learning models using 8-10 plasma protein markers measured early within the course of infection are able to accurately predict symptom severity, T cell memory, and the antibody response post-infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3