Disruption of Brachypodium Lichenase Alters Metabolism of Mixed-linkage Glucan and Starch

Author:

Fan Mingzhu,Jensen Jacob K.,Zemelis-Durfee Starla,Kim Sang-Jin,Chan Jia-Yi,Beaudry Claudia M.,Brandizzi FedericaORCID,Wilkerson Curtis G.ORCID

Abstract

ABSTRACTMixed-linkage glucan (MLG), which is widely distributed in grasses, is a polysaccharide highly abundant in cell walls of grass endosperm and young vegetative tissues. Lichenases are enzymes that hydrolyze MLG first identified in MLG-rich lichens. In this study, we identify a gene encoding a lichenase we name Brachypodium distachyon LICHENASE 1 (BdLCH1), which is highly expressed in the endosperm of germinating seeds and coleoptiles and at lower amounts in mature shoots. RNA in situ hybridization showed that BdLCH1 is primarily expressed in chlorenchyma cells of mature leaves and internodes. Disruption of BdLCH1 resulted in an eight-fold increase in MLG content in senesced leaves. Consistent with the in situ hybridization data, immunolocalization results showed that MLG was not removed in chlorenchyma cells of lch1 mutants as it was in wild type and implicate the BdLCH1 enzyme in removing MLG in chlorenchyma cells in mature vegetative tissues. We also show that MLG accumulation in lch1 mutants was resistant to dark induced degradation, and eight-week-old lch1 plants showed a faster rate of starch breakdown than wild type in darkness. Our results suggest a role for BdLCH1 in modifying the cell wall to support highly metabolically active cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3