Adult neuromarkers of sustained attention and working memory predict inter- and intra-individual differences in these processes in youth

Author:

Kardan OmidORCID,Stier Andrew J.ORCID,Cardenas-Iniguez Carlos,Pruin Julia C.,Schertz Kathryn E.,Deng Yuting,Chamberlain Taylor,Meredith Wesley J.,Zhang Xihan,Bowman Jillian E.,Lakhtakia Tanvi,Tindel Lucy,Avery Emily W.,Lin QiORCID,Yoo KwangsunORCID,Chun Marvin M.,Berman Marc G.,Rosenberg Monica D.ORCID

Abstract

AbstractSustained attention and working memory are central cognitive processes that vary between individuals, fluctuate over time, and have consequences for life and health outcomes. Here we characterize the functional brain architecture of these abilities in 9– 11-year-old children using models based on functional magnetic resonance imaging functional connectivity. Using data from the Adolescent Brain Cognitive Development (ABCD) Study, we asked whether connectome-based models built to predict sustained attention and working memory in adults generalize to capture inter- and intra-individual differences in sustained attention and working memory performance in youth. Results revealed that a predefined connectome-based model of sustained attention predicted children’s performance on the 0-back task, an attentionally taxing low-working-memory-load task. A predefined connectome-based model of working memory, on the other hand, also predicted performance on the 2-back task, an attentionally taxing high-working-memory-load task. The sustained attention model’s predictive power was comparable to that achieved when predicting adults’ 0-back performance and by a connectome-based model of cognition defined in the ABCD sample itself. Finally, the working memory model predicted children’s recognition memory for n-back task stimuli. Together these results demonstrate that connectome-based models of sustained attention and working memory generalize to youth, reflecting the functional architecture of these processes in the developing brain.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3