Distributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals

Author:

Avery Emily W.1,Yoo Kwangsun1,Rosenberg Monica D.12,Greene Abigail S.1,Gao Siyuan1,Na Duk L.3,Scheinost Dustin4,Constable Todd R.14,Chun Marvin M.1

Affiliation:

1. Yale University

2. University of Chicago

3. Samsung Medical Center, Seoul, South Korea

4. Yale School of Medicine

Abstract

Abstract Individual differences in working memory relate to performance differences in general cognitive ability. The neural bases of such individual differences, however, remain poorly understood. Here, using a data-driven technique known as connectome-based predictive modeling, we built models to predict individual working memory performance from whole-brain functional connectivity patterns. Using n-back or rest data from the Human Connectome Project, connectome-based predictive models significantly predicted novel individuals' 2-back accuracy. Model predictions also correlated with measures of fluid intelligence and, with less strength, sustained attention. Separate fluid intelligence models predicted working memory score, as did sustained attention models, again with less strength. Anatomical feature analysis revealed significant overlap between working memory and fluid intelligence models, particularly in utilization of prefrontal and parietal regions, and less overlap in predictive features between working memory and sustained attention models. Furthermore, showing the generality of these models, the working memory model developed from Human Connectome Project data generalized to predict memory in an independent data set of 157 older adults (mean age = 69 years; 48 healthy, 54 amnestic mild cognitive impairment, 55 Alzheimer disease). The present results demonstrate that distributed functional connectivity patterns predict individual variation in working memory capability across the adult life span, correlating with constructs including fluid intelligence and sustained attention.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3