Abundant non-A residues in the poly(A) tail orchestrate the mouse oocyte-to-embryo transition

Author:

Liu YushengORCID,Nie Hu,Wang Le-Yun,Wu Shuang,Li WeiORCID,Zhou Qi,Wang JiaqiangORCID,Lu FalongORCID

Abstract

AbstractNon-A (U, G, and C) residues can be added to the 5’-end, internal, and 3’-end positions of poly(A) tails of RNA transcripts1–3, and some of these have been shown to regulate mRNA stability4, 5. The mammalian oocyte-to-embryo transition (OET) relies on post-transcriptional regulation of maternal RNA, because transcription is silent during this process until the point of zygotic genome activation (ZGA)6–9. Although the regulation of mRNA translation by poly(A) tail length plays an important role in the mammalian OET, the dynamics and functions of non-A residues in poly(A) tails are completely unknown. In this study, we profiled the genome-wide presence, abundance, and roles of non-A residues during the OET in mice using PAIso-seq1 and PAIso-seq22, 10, two complementary methods of poly(A) tail analysis. We found that non-A residues are highly dynamic in maternal mRNA, following a general pattern of beginning to increase at the MII stage, becoming highly abundant after fertilization with U residues in about half of poly(A) tails in 1-cell embryos, and declining in 2-cell embryos. We revealed that Btg4-mediated global maternal mRNA deadenylation created the substrates for U residue addition by Tut4/7 at their 3’-ends and further re-polyadenylation. In addition, G residues can be added by Tent4a/b. Finally, we demonstrate that G residues stabilize the modified mRNA, while the U residues mark maternal RNA for faster degradation in 2-cell mouse embryos. Taken together, these findings demonstrate that non-A residues are abundant and re-sculpt the maternal transcriptome to initiate zygotic development, which reveals the functional importance of the post-transcriptional regulation mediated by non-A residues in mRNA poly(A) tails.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3