Abstract
AbstractTrichuris nematodes reproduce within the microbiota-rich mammalian intestine, yet microbial byproducts that facilitate the parasite lifecycle are unknown. Here, we report a novel pipeline to identify microbial factors with conserved roles in the reproduction of nematodes. A screen for E. coli mutants that impair C. elegans fertility identified genes in fatty acid biosynthesis and ethanolamine utilization pathways, including fabH and eutN. Trichuris muris eggs displayed defective hatching in the presence of E. coli deficient in fabH or eutN due to reduction in arginine or elevated levels of aldehydes, respectively. Remarkably, T. muris reared in gnotobiotic mice colonized with these E. coli mutants failed to lay viable eggs. These findings indicate that microbial byproducts mediate evolutionarily conserved transkingdom interactions that impact reproductive fitness of distantly-related nematodes.One-Sentence SummaryByproducts from the microbiota contribute to the life cycles of distantly-related free-living and parasitic worms.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献