Hopanoids confer robustness to physicochemical variability in the niche of the plant symbiont Bradyrhizobium diazoefficiens

Author:

Tookmanian Elise,Junghans Lisa,Kulkarni Gargi,Ledermann RaphaelORCID,Saenz JamesORCID,Newman Dianne K.ORCID

Abstract

AbstractClimate change poses a threat to soil health and agriculture, but the potential effects of climate change on soil bacteria that can help maintain soil health are understudied. Rhizobia are a group of bacteria that increase soil nitrogen content through a symbiosis with legume plants. The soil and symbiosis are potentially stressful environments, and the soil will likely become even more stressful as the climate changes. Many rhizobia within the bradyrhizobia clade, like Bradyrhizobium diazoefficiens, possess the genetic capacity to synthesize hopanoids, steroid-like lipids similar in structure and function to cholesterol. Hopanoids are known to protect against stresses relevant to the niche of B. diazoefficiens. Paradoxically, mutants unable to synthesize the extended class of hopanoids participate in similarly successful symbioses compared to the wild type, despite being delayed in root nodule initiation. Here, we show that in B. diazoefficiens, the in vitro growth defects of extended hopanoid deficient mutants can be at least partially compensated for by the physicochemical environment, specifically by optimal osmotic and divalent cation concentrations. Through biophysical measurements, we show that extended hopanoids confer robustness to environmental variability. These results help explain the discrepancy between previous in vitro and in planta results and indicate that hopanoids may provide a greater fitness advantage to rhizobia in the variable soil environment than the more controlled environment within root nodules. To improve the legume-rhizobia symbiosis through either bioengineering or strain selection, it will be important to consider the full lifecycle of rhizobia, from the soil to the symbiosis.ImportanceRhizobia, such as B. diazoefficiens, play an important role in the nitrogen cycle by making nitrogen gas bioavailable through symbiosis with legume plants. As climate change threatens soil health, this symbiosis has reentered the spotlight as a more sustainable source of soil nitrogen than the energy-intensive Haber-Bosch process. Efforts to use rhizobia as biofertilizers have been effective; however, long term integration of rhizobia into the soil community has been less successful. This work represents a small step towards improving the legume-rhizobia symbiosis by identifying a cellular component—hopanoid lipids—that confers robustness to environmental stresses rhizobia are likely to encounter in soil microenvironments as sporadic desiccation and flooding events become more common.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3