Studying the dawn of de novo gene emergence in mice reveals fast integration of new genes into functional networks

Author:

Xie ChenORCID,Bekpen Cemalettin,Künzel Sven,Keshavarz Maryam,Krebs-Wheaton Rebecca,Skrabar Neva,Ullrich KristianORCID,Tautz DiethardORCID

Abstract

AbstractThe de novo emergence of new transcripts has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here we focus on three loci that have evolved from previously intergenic sequences in the house mouse (Mus musculus) and are not present in its closest relatives. We have obtained knockouts and analyzed their phenotypes, including a deep transcriptomic analysis, based on a dedicated power analysis. We show that the transcriptional networks are significantly disturbed in the knockouts and that all three genes have effects on phenotypes that are related to their expression patterns. This includes behavioral effects, skeletal differences and the regulation of the reproduction cycle in females. Substitution analysis suggests that all three genes have directly obtained an activity, without new adaptive substitutions. Our findings support the hypothesis that de novo genes can quickly adopt functions without extensive adaptation.Impact statementNew protein-coding genes emerging out of non-coding sequences can become directly functional without signatures of adaptive protein changes

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3