Abstract
AbstractSince their discovery in the early ‘70s1, hippocampal place cells have been studied in numerous animal and human spatial memory paradigms2–4. These pyramidal cells, along with other spatially tuned types of neurons (e.g. grid cells, head direction cells), are thought to provide the mammalian brain a unique spatial signature characterizing a specific environment, and thereby a memory trace of the subject’s place5. While grid and head direction cells are found in various brain regions, only few hippocampal-related structures showing ‘place cell’-like neurons have been identified6,7, thus reinforcing the central role of the hippocampus in spatial memory. Concurrently, it is increasingly suggested that visual areas play an important role in spatial cognition as recent studies showed a clear spatial selectivity of visual cortical (V1) neurons in freely moving rodents8–10. We therefore thought to investigate, in the rat, such spatial correlates in a thalamic structure located one synapse upstream of V1, the dorsal Lateral Geniculate Nucleus (dLGN), and discovered that a substantial proportion (ca. 30%) of neurons exhibits spatio-selective activity. We found that dLGN place cells maintain their spatial selectivity in the absence of visual inputs, presumably relying on odor and locomotor inputs. We also found that dLGN place cells maintain their place selectivity across sessions in a familiar environment and that contextual modifications yield separated representations. Our results show that dLGN place cells are likely to participate in spatial cognition processes, creating as early as the thalamic stage a comprehensive representation of one given environment.
Publisher
Cold Spring Harbor Laboratory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献