Spatially Explicit Modeling of 2019-nCoV Epidemic Trend Based on Mobile Phone Data in Mainland China

Author:

Zhu Xiaolin,Zhang Aiyin,Xu Shuai,Jia Pengfei,Tan Xiaoyue,Tian Jiaqi,Wei Tao,Quan Zhenxian,Yu Jiali

Abstract

AbstractAs of February 11, 2020, all prefecture-level cities in mainland China have reported confirmed cases of 2019 novel coronavirus (2019-nCoV), but the city-level epidemical dynamics is unknown. The aim of this study is to model the current dynamics of 2019-nCoV at city level and predict the trend in the next 30 days under three possible scenarios in mainland China. We developed a spatially explicit epidemic model to consider the unique characteristics of the virus transmission in individual cities. Our model considered that the rate of virus transmission among local residents is different from those with Wuhan travel history due to the self-isolation policy. We introduced a decay rate to quantify the effort of each city to gradually control the disease spreading. We used mobile phone data to obtain the number of individuals in each city who have travel history to Wuhan. This city-level model was trained using confirmed cases up to February 10, 2020 and validated by new confirmed cases on February 11, 2020. We used the trained model to predict the future dynamics up to March 12, 2020 under different scenarios: the current trend maintained, control efforts expanded, and person-to-person contact increased due to work resuming. We estimated that the total infections in mainland China would be 72172, 54348, and 149774 by March 12, 2020 under each scenario respectively. Under the current trend, all cities will show the peak point of daily new infections by February 21. This date can be advanced to February 14 with control efforts expanded or postponed to February 26 under pressure of work resuming. Except Wuhan that cannot eliminate the disease by March 12, our model predicts that 95.4%, 100%, and 75.7% cities will have no new infections by the end of February under three scenarios. The spatial pattern of our prediction could help the government allocate resources to cities that have a more serious epidemic in the next 30 days.

Publisher

Cold Spring Harbor Laboratory

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3