Forecasting Techniques for the Pandemic Trend of COVID-19

Author:

Abstract

Forecasting the trend of the COVID-19 pandemic has been crucial for controlling the spread and making related disease control policies. Various forecasting techniques can be served thereby assisting in strengthening the healthcare system to fight the pandemic. With the development of big data and machine learning techniques, prediction models become more accurate in yielding preparations against risks and threats. In this chapter, three types of forecasting methods, machine learning models, time series forecasting techniques, and deep learning algorithms, are categorized and introduced, mathematically and empirically. To justify the outcomes from each model, this chapter has presented case studies of three pandemic scenarios, including the early stage, the second wave, and the real-time prediction, with real data for the United States. Model comparisons and evaluations have been also illustrated to forecast the number of possible causes. Various existing studies about pandemic predictions are included in the current research by big data analytics.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3