Abstract
AbstractCellulose is synthesized by rosette structured cellulose synthase (CESA) complexes (CSCs), each of which is composed of multiple units of CESAs in three different isoforms. CSCs rely on vesicle trafficking for delivery to the plasma membrane where they catalyze cellulose synthesis. Although the rosette structured CSCs were observed decades ago, it remains unclear what amino acids in plant CESA that directly participate in cellulose catalytic synthesis. It is also not clear how the catalytic activity of CSCs influences their efficient transport at the subcellular level. Here we report characterization of the small molecule Endosidin20 (ES20) and present evidence that it represents a new CESA inhibitor. We show data from chemical genetic analyses, biochemical assays, structural modeling, and molecular docking to support our conclusion that ES20 targets the catalytic site of Arabidopsis CESA6. Further, chemical genetic analysis reveals important amino acids that potentially form the catalytic site of plant CESA6. Using high spatiotemporal resolution live-cell imaging, we found that inhibition of CSC catalytic activity by inhibitor treatment, or by creating missense mutation at amino acids in the predicted catalytic site, causes reduced efficiency in CSC transport to the plasma membrane. Our results show that the catalytic activity of plant CSCs is integrated with subcellular trafficking dynamics.One sentence summaryEndosidin20 targets cellulose synthase at the catalytic site to inhibit cellulose synthesis and the inhibition of catalytic activity reduces cellulose synthase complex delivery to the plasma membrane.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献