Imaging and tracking mRNA in live mammalian cells via fluorogenic photoaffinity labeling

Author:

Ayele Tewoderos M.ORCID,Loya TravisORCID,Valdez-Sinon Arielle N.ORCID,Bassell Gary J.,Heemstra Jennifer M.ORCID

Abstract

ABSTRACTCellular RNA labeling using light-up aptamers that bind to and activate fluorogenic molecules has gained interest in recent years as an alternative to protein-based RNA labeling approaches. Aptamer-based systems are genetically encodable and cover the entire visible spectrum. However, the relatively weak nature of the non-covalent aptamer-fluorogen interaction limits the utility of these systems in that multiple copies of the aptamer are often required, and in most cases the aptamer must be expressed on a second scaffold such as a transfer RNA. We propose that these limitations can be averted through covalent RNA labeling, and here we describe a photoaffinity approach in which the aptamer ligand is functionalized with a photoactivatable reactive group such that irradiation with UV light results in covalent attachment to the RNA of interest. In addition to the robustness of the covalent linkage, this approach benefits from the ability to temporally control RNA labeling. To demonstrate this method, we incorporated a photoaffinity linker onto malachite green and fused the malachite green aptamer to a specific mRNA reporter of interest. We observed markedly improved sensitivity for fixed cell imaging of mRNA using this approach compared to in situ hybridization. Additionally, we demonstrate visualization of RNA dynamics in live cells using an mRNA having only a single copy of the aptamer, minimizing perturbation of the structure and localization. Our initial biological application utilizes the photoaffinity labeling approach to monitor RNA stress granule dynamics and we envision future application of this method for a wide range of investigations into the cellular localization, dynamics, and protein binding properties of cellular RNAs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3