A chemical probe based on the PreQ1 metabolite enables transcriptome-wide mapping of binding sites

Author:

Balaratnam Sumirtha,Rhodes Curran,Bume Desta Doro,Connelly ColleenORCID,Lai Christopher C.,Kelley James A.,Yazdani Kamyar,Homan Philip J.,Incarnato DannyORCID,Numata Tomoyuki,Schneekloth Jr John S.ORCID

Abstract

AbstractThe role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the class-I PreQ1 riboswitch aptamer covalently. For the most active probe (11), a diazirine-based photocrosslinking analog of PreQ1, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the probe. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to 11, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1, which is similar in structure to guanine, interacts with human RNAs.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Targeting RNA with small molecules, from RNA structures to precision medicines: IUPHAR review: 40;British Journal of Pharmacology;2024-09-03

2. Protocol for transcriptome-wide mapping of small-molecule RNA-binding sites in live cells;STAR Protocols;2024-09

3. Disulfide Tethering to Map Small Molecule Binding Sites Transcriptome-wide;ACS Chemical Biology;2024-08-28

4. Prospects for Riboswitches in Drug Development;Methods and Principles in Medicinal Chemistry;2024-07-05

5. Outlook;Methods and Principles in Medicinal Chemistry;2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3