Metastable GPCR dimers trigger the basal signal by recruiting G-proteins

Author:

Kasai Rinshi S.,Fujiwara Takahiro K.,Kusumi Akihiro

Abstract

G-protein-coupled receptors (GPCRs) constitute the largest family of integral membrane proteins in the human genome and are responsible for various important signaling pathways for vision, olfaction, gustation, emotion, cell migration, etc. A distinct feature of the GPCR-family proteins is that many GPCRs, including the prototypical GPCR, β2-adrenergic receptor (β2AR), elicit low levels of basal constitutive signals without agonist stimulation, which function in normal development and various diseases1–3. However, how the basal signals are induced is hardly known. Another general distinctive feature of GPCRs is to form metastable homo-dimers, with lifetimes on the order of 0.1 s, even in the resting state. Here, our single-molecule-based quantification4determined the dissociation constant of β2AR homo-dimers in the PM (1.6 ± 0.29 copies/μm2) and their lifetimes (83.2 ± 6.4 ms), and furthermore found that, in the resting state, trimeric G-proteins were recruited to both β2AR monomers and homo-dimers. Importantly, inverse agonists, which suppress the GPCR’s basal constitutive activity, specifically blocked the G-protein recruitment to GPCR homo-dimers, without affecting that to monomers. These results indicate that the G-proteins recruited to transient GPCR homo-dimers are responsible for inducing their basic constitutive signals. These results suggest novel drug development strategies to enhance or suppress GPCR homo-dimer formation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3