Antiparallel dimer structure of CELSR cadherin in solution revealed by high-speed atomic force microscopy

Author:

Nishiguchi Shigetaka1ORCID,Kasai Rinshi S.23ORCID,Uchihashi Takayuki145ORCID

Affiliation:

1. Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan

2. Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

3. Institute for Glyco-core Research, Gifu University, Gifu 501-1193, Japan

4. Department of Physics, Nagoya University, Nagoya 464-8602, Japan

5. Institute for Glyco-core Research, Nagoya University, Nagoya 464-8602, Japan

Abstract

Cadherin EGF LAG seven-pass G-type receptors (CELSR) cadherins, members of the cadherin superfamily, and adhesion G-protein-coupled receptors, play a vital role in cell–cell adhesion. The mutual binding of the extracellular domains (ectodomains) of CELSR cadherins between cells is crucial for tissue formation, including the establishment of planar cell polarity, which directs the proper patterning of cells. CELSR cadherins possess nine cadherin ectodomains (EC1–EC9) and noncadherin ectodomains. However, the structural and functional mechanisms of the binding mode of CELSR cadherins have not been determined. In this study, we investigated the binding mode of CELSR cadherins using single-molecule fluorescence microscopy, high-speed atomic force microscopy (HS-AFM), and bead aggregation assay. The fluorescence microscopy analysis results indicated that the trans -dimer of the CELSR cadherin constitutes the essential adhesive unit between cells. HS-AFM analysis and bead aggregation assay results demonstrated that EC1–EC8 entirely overlap and twist to form antiparallel dimer conformations and that the binding of EC1–EC4 is sufficient to sustain bead aggregation. The interaction mechanism of CELSR cadherin may elucidate the variation of the binding mechanism within the cadherin superfamily and physiological role of CELSR cadherins in relation to planar cell polarity.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3