Author:
Collins Emily J,Cervantes-Silva Mariana P,Timmons George A,O’Siorain James R,Curtis Annie M,Hurley Jennifer M
Abstract
SUMMARYOur core timekeeping mechanism, the circadian clock, regulates an astonishing amount of cellular physiology and behavior, playing a vital role in organismal fitness. While the mechanics of circadian control over cellular regulation can in part be explained by the transcriptional activation stemming from the positive arm of the clock’s transcription-translation negative feedback loop, research has shown that extensive circadian regulation occurs beyond transcriptional activation in fungal species and data suggest that this post-transcriptional regulation may also be preserved in mammals. To determine the extent to which circadian output is regulated post-transcriptionally in mammalian cells, we comprehensively profiled the transcriptome and proteome of murine bone marrow-derived macrophages in a high resolution, sample rich time course. We found that only 15% of the circadian proteome had corresponding oscillating mRNA and this regulation was cell intrinsic. Ontological analysis of oscillating proteins revealed robust temporal enrichment for protein degradation and translation, providing potential insights into the source of this extensive post-transcriptional regulation. We noted post-transcriptional temporal-gating across a number of connected metabolic pathways. This temporal metabolic regulation further corresponded with rhythms we observed in ATP production, mitochondrial morphology, and phagocytosis. With the strong interconnection between cellular metabolic states and macrophage phenotypes/responses, our work demonstrates that post-transcriptional circadian regulation in macrophages is broadly utilized as a tool to confer time-dependent immune function and responses. As macrophages coordinate many immunological and inflammatory functions, an understanding of this regulation provides a framework to determine the impact of circadian regulation on a wide array of disease pathologies.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献