Differential effects of environmental and endogenous 24h rhythms within a deep-coverage spatiotemporal proteome

Author:

Kay Holly,Grünewald Ellen,Feord Helen K.,Gil Sergio,Peak-Chew Sew Y.,Stangherlin AlessandraORCID,O’Neill John S.ORCID,van Ooijen GerbenORCID

Abstract

AbstractThe cellular landscape of most eukaryotic cells changes dramatically over the course of a 24h day. Whilst the proteome responds directly to daily environmental cycles, it is also regulated by a cellular circadian clock that anticipates the differing demands of day and night. To quantify the relative contribution of diurnal versus circadian regulation, we mapped spatiotemporal proteome dynamics under 12h:12h light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage of the theoretical proteome which provided an unprecedented insight into the identity of proteins that drive and facilitate rhythmic cellular functions. Surprisingly, the overlap between diurnally- and circadian-regulated proteins was quite modest (11%). These proteins exhibited different phases of oscillation between the two conditions, consistent with an interaction between intrinsic and extrinsic regulatory factors. The relative amplitude of rhythmic protein abundance was much lower than would be expected from daily variations in transcript abundance. Transcript rhythmicity was poorly predictive of daily variation in abundance of the encoded protein. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a remarkably different phase distribution compared with rhythmic soluble proteins, indicating the existence of a novel circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Taken together, our observations argue that the daily spatiotemporal regulation of cellular proteome composition is not dictated solely by clock-regulated gene expression. Instead, it also involves extensive rhythmic post-transcriptional, translational, and post-translational regulation that is further modulated by environmental timing cues.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3