Abstract
AbstractThe construction of energetically autonomous artificial protocells is one of the most urgent and challenging requirements in bottom-up synthetic biology. Here we show a hybrid multi-compartment approach to build Artificial Simplified-Autotroph Protocells (ASAPs) in an effective manner. Chromatophores obtained fromRhodobacter sphaeroidesaccomplish the photophosphorylation of ADP to ATP functioning as nanosized photosynthetic organellae when encapsulated inside artificial giant phospholipid vesicles. Under continuous illumination chromatophores produce ATP that in turn sustains the transcription of a DNA gene by T7 RNA polymerase inside ASAPs. Cryo-EM and time-resolved spectroscopy were used for characterizing the chromatophore morphology and the orientation of the photophosphorylation proteins, which allow high ATP production rates (up to ~100 ATP/s per ATP synthase). mRNA biosynthesis inside individual vesicles has been determined by confocal microscopy. The hybrid multi-compartment approach here proposed appears at the same time convenient and effective, and thus very promising for the construction of full-fledged artificial protocells.
Publisher
Cold Spring Harbor Laboratory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献