Abstract
AbstractExercise training improves skeletal muscle function, notably through tissue regeneration by muscle stem cells. Here, we hypothesized that exercise training reprograms the epigenome of muscle cell, which could account for better muscle function. Genome-wide DNA methylation of myotube cultures established from middle-aged obese men before and after endurance exercise training identified a differentially methylated region (DMR) located downstream of Gremlin 1 (GREM1), which was associated with increased GREM1 expression. GREM1 expression was lower in muscle satellite cells from obese, compared to lean mice, and exercise training restored GREM1 levels to those of control animals. We show that GREM1 regulates muscle differentiation through the negative control of satellite cell self-renewal, and that GREM1 controls muscle lineage commitment and lipid oxidation through the AMPK pathway. Our study identifies novel functions of GREM1 and reveals an epigenetic mechanism by which exercise training reprograms muscle stem cells to improve skeletal muscle function.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献