iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling

Author:

Guo Dongsheng12ORCID,Daman Katelyn12ORCID,Chen Jennifer JC1,Shi Meng-Jiao1,Yan Jing1,Matijasevic Zdenka13,Rickard Amanda M4,Bennett Monica H4,Kiselyov Alex4,Zhou Haowen5,Bang Anne G5,Wagner Kathryn R6,Maehr René7ORCID,King Oliver D1ORCID,Hayward Lawrence J12ORCID,Emerson Charles P12ORCID

Affiliation:

1. Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School

2. Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School

3. Transgenic Animal Modeling Core, University of Massachusetts Chan Medical School

4. Genea Biocells

5. Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute

6. Center for Genetic Muscle Disorders, Kennedy Krieger Institute

7. Program in Molecular Medicine, University of Massachusetts Chan Medical School

Abstract

Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.

Funder

Muscular Dystrophy Association

National Institutes of Health

LGMD 2I Fund

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3